۱- جاهای خالی را در مجموعههای زیر طوری پر کنید که مجموعهها برابر باشند:
الف) $ \{۵, \_, \frac{۲}{۵}, \frac{۹}{۳}\} = \{\frac{۲}{۵}, ۳, \frac{-\sqrt{۱۴۴}}{(-۲)^۲}, \sqrt{۲۵}\} $
پاسخ تشریحی:
برای اینکه دو مجموعه برابر باشند، باید اعضای آنها دقیقاً یکسان باشند. ترتیب نوشتن اعضا و شکل نمایش آنها اهمیتی ندارد.
**مرحله ۱: سادهسازی اعضای دو مجموعه**
ابتدا تمام اعضای هر دو مجموعه را به سادهترین شکل ممکن مینویسیم.
* **مجموعهی سمت راست:**
* $ \frac{۲}{۵} $ (ساده است)
* $ ۳ $ (ساده است)
* $ \frac{-\sqrt{۱۴۴}}{(-۲)^۲} = \frac{-۱۲}{۴} = -۳ $
* $ \sqrt{۲۵} = ۵ $
بنابراین، مجموعهی سمت راست برابر است با: $ \{\frac{۲}{۵}, ۳, -۳, ۵\} $
* **مجموعهی سمت چپ:**
* $ ۵ $ (ساده است)
* $ \_ $ (جای خالی)
* $ \frac{۲}{۵} $ (ساده است)
* $ \frac{۹}{۳} = ۳ $
بنابراین، مجموعهی سمت چپ به صورت $ \{۵, \_, \frac{۲}{۵}, ۳\} $ است.
**مرحله ۲: مقایسه و پیدا کردن عضو گمشده**
حالا دو مجموعهی سادهشده را مقایسه میکنیم:
* مجموعهی سمت چپ: $ \{۵, \frac{۲}{۵}, ۳, \_\} $
* مجموعهی سمت راست: $ \{۵, \frac{۲}{۵}, ۳, -۳\} $
با مقایسه، میبینیم که اعضای $۵$, $ \frac{۲}{۵} $ و $۳$ در هر دو مجموعه مشترک هستند. تنها عضوی که در مجموعهی سمت راست وجود دارد ولی در سمت چپ (به جز جای خالی) نیست، عدد **-۳** است.
بنابراین، برای اینکه دو مجموعه برابر باشند، جای خالی باید با عدد **-۳** پر شود.